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Existing literature suggests that hospital occupancy matters for quality of care as measured

by various patient outcomes. However, estimating the causal effect of increased hospital busy-

ness on in-hospital mortality remains an elusive task due to statistical power challenges and

the difficulty in separating shocks to occupancy from changes in patient composition. Using

data from a large public hospital system in Mexico, we estimate the impact of congestion on

in-hospital mortality by exploiting the shock in hospitalizations induced by the 2009 H1N1

pandemic, instrumenting hospital admissions due to acute respiratory infections (ARIs) with

measures of ARI cases at nearby healthcare facilities as a proxy for the size of the local out-

break. Our instrumental variables estimates show that a one percent increase in ARI admissions

in 2009 led to a 0.25% increase in non-ARI in-hospital mortality. We show that these effects

are non-linear in the size of the local outbreak, consistent with the existence of tipping points.

We further show that effects are concentrated at hospitals with limited infrastructure, suggest-

ing that supply-side policies that improve patient assignment across hospitals and strategically

increase hospital capacity could mitigate some of the negative impacts. We discuss managerial

implications, suggesting that up to 25-30% of our estimated deaths at small and non-ICU hos-

pitals could have been averted by reallocating patients to reduce congestion.
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Camino a Santa Teresa 930. Colonia Heroes de Padierna, Magdalena Contreras CDMX 10700, Mexico. Email:
adrian.rubli@itam.mx

1

emilio.gutierrez@itam.mx
adrian.rubli@itam.mx


1 Introduction

Hospital overcrowding may lead to lower quality of care due to smaller staff-to-patient ratios, fewer

material resources per patient, and increased stress among personnel, all of which may be exacer-

bated in settings with limited infrastructure. By negatively affecting quality of care, congestion may

then have an impact on patient outcomes. During large shocks, such as epidemics, understanding

the impact of overcrowding on mortality is crucial for the mitigation strategy.

In this paper, we ask whether increased hospital occupancy has a causal impact on in-hospital

mortality. We overcome the empirical challenges facing the literature by exploiting a dataset that

is comprehensive of a large Mexican hospital system and leveraging arguably exogenous variation

in admissions driven by the 2009 H1N1 pandemic for identification.

This setting is informative for several reasons. First, Mexico is a middle-income country with

important limitations in healthcare infrastructure (OECD, 2005), which may be relevant for con-

gestion. Second, the H1N1 pandemic was a quasi-exogenous health shock. Lastly, although our

findings may not necessarily be externally valid for Covid-19 due to differences in timing, severity,

and other characteristics with respect to H1N1, they may still inform management strategies for

dealing with the current pandemic.1

We follow an instrumental variables (IV) approach to estimate the impact of increased hospital

admissions due to acute respiratory infections (ARIs) on non-ARI in-hospital mortality. We instru-

ment ARI hospitalizations with weekly local measures of ARI cases at nearby healthcare centers.2

We establish a strong first stage, estimating that a one standard deviation (sd) increase in neigh-

boring ARIs increased ARI hospitalizations by 0.11 sd, equivalent to a 17 to 41% increase relative

to previous years. Next, we present some evidence that the exclusion restriction holds, finding no

effects of local ARI outbreaks on non-ARI admissions, suggesting that this shock was exogenous to

non-ARI hospitalizations and that selection is unlikely to drive our results.

Our main IV estimates show that non-ARI hospital deaths increased by 0.17 sd for a one sd

increase in ARI admissions, or equivalently, a 0.25% increase due to a one percent increment in

hospitalizations. We show that this effect is non-linear in the size of the local ARI outbreak, with

1Moreover, the data for the H1N1 pandemic in Mexico has now been revised and vetted by researchers (Charu
et al., 2011), rendering it more reliable than some of the current real-time Covid-19 data.

2Other studies, such as Lau et al. (2019), have analyzed excess ARI admissions due to the H1N1 outbreak in
different settings.
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effects concentrated at the top quintile. Given the linearity of the first stage, this is consistent

with the existence of tipping points.3 Furthermore, our mortality results are driven by smaller

hospitals (fewer than 19 beds) and by hospitals without an intensive care unit (ICU). Crucially for

interpretation, all coefficients correspond to the marginal effect of a one sd increase in admissions.

Our findings have important practical implications for the management of hospital strain. We

discuss three potential policies in our setting: better allocation of patients across hospitals, changes

in admission and treatment decisions, and transforming hospital capacity. Given the availability

of beds at hospitals within 5 km, we calculate that around 25 to 30% of our estimated mortality

effects could have been avoided by reallocating patients to nearby hospitals, but that geographically

isolated hospitals had no such low-cost alternative to avoid overcrowding. We conclude that cen-

tralizing patient allocation could be a feasible and cost-effective intervention, although constraints

in bed availability at nearby facilities may hamper its effectiveness during severe surges in hospital

demand.

The causal estimation of overcrowding on patient outcomes – and mortality in particular –

is a difficult empirical task requiring exogenous variation in hospital strain and large samples for

identifying mortality effects and tipping points.4 Most of the literature documents correlations,

ignoring potential changes in patient selection, and treating variations in admissions as exogenous

(see Eriksson et al., 2017 for a review). A smaller set of papers have exploited high-frequency

variation in hospitalizations to claim a causal impact (Freedman, 2016; Marks and Choi, 2019;

Hoe, 2019). We build on them by focusing on in-hospital mortality, identifying non-linearities, and

investigating the role of hospital infrastructure.

Within the hospital management literature, most papers have focused on case studies of single

hospitals or groups of hospitals (Freeman et al., 2017; Kc and Terwiesch, 2012; Song et al., 2019;

Kim et al., 2015), and some do not have a clear source of exogenous variation in occupancy although

various controls are included (Berry Jaeker and Tucker, 2017; Friebel et al., 2019; Abir et al., 2020).

Moreover, the majority focus on outcomes related to length of stay and readmission.

3Kuntz et al. (2015) identifies safety tipping points in hospital utilization among 83 German hospitals, showing
that high occupancy beyond the threshold increases in-hospital mortality. However, this estimation does not use an
exogenous source of variation in hospital admissions.

4Six out of thirty studies reviewed in Eriksson et al. (2017) explore non-linearities, but treat variations in hospital
strain as exogenous. One study does consider unexpected changes in strain, but the specification does not allow for
non-linearities (Schwierz et al., 2012). See Table S1 in the online appendix for more details.
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We make at least three important contributions to this literature. First, we analyze an entire

public hospital system in Mexico corresponding to 50% of all public sector admissions. Second, we

exploit spatial and temporal fluctuations in the severity of the 2009 H1N1 pandemic as a source of

arguably exogenous variation in hospital admissions due to ARIs to estimate the impact on non-

ARI-related mortality.5 This allows us to better isolate hospital busyness from contemporaneous

supply and demand factors. Third, we focus on the link between congestion and in-hospital mortal-

ity, exploring non-linearities.6 Lastly, given our setting, our results also contribute to the current

discussions regarding the optimal management strategy for the ongoing coronavirus pandemic.

2 Context

The 2009 H1N1 pandemic began in Mexico in March with unusual increases in influenza-like ill-

nesses (Fraser et al., 2009), evolving into a three-wave pandemic with varying severity across space

and time (Chowell et al., 2011).7 Figure 1 shows nation-wide trends in ARIs for multiple years.

Consistent with the literature (Charu et al., 2011), we focus on data for all ARIs since misdiag-

noses and unconfirmed H1N1 cases may misrepresent the full extent of the epidemic. However, the

pattern holds when restricting to lab-confirmed H1N1 counts only. The two large increases in ARIs

during 2009 in Figure 1 are completely out of line with the usual ARI trends in Mexico. Total

excess ARIs, taken as the difference with respect to the 2007-2008 average, amount to 6.98 million

cases or a 30% increase.

By December 2009, the H1N1 pandemic was associated with 12.5-16 thousand excess all-cause

deaths and 4.4-5.6 thousand pneumonia and influenza deaths (Charu et al., 2011).8 Researchers

identified early on that delayed access to inpatient treatment was a key risk factor (Echevarŕıa-Zuno

et al., 2009), leading to concerns about increased hospital occupancy and congestion, especially

given the low hospital supply and lack of human resources in Mexico (OECD, 2005).9

5Since we focus on the H1N1 pandemic, our work is closely related to the literature exploring the surge in mortality
worldwide during this outbreak (see Duggal et al., 2016 for a review).

6In this sense, our paper is related to the literature attempting to estimate the value of the marginal hospital
admission (see, for example, Currie and Slusky, 2020 and the literature review therein).

7Influenza-like illnesses are respiratory diseases characterized by a sudden onset of symptoms commonly seen in
influenza cases, such as fever, shivering, chills, cough, body aches, and nausea.

8This is an average mortality rate of 4.5 and 12.7 per 100,000, for ARIs and all causes, respectively.
9For example, there were 1.6 hospital beds per 1,000 people in Mexico during the study period, compared to 3.1

in the US and 5.9 in the Euro area. Mexico had 4.1 medical personnel (doctors, nurses, and midwives) per 1,000
people, relative to 15 for the US and 11.8 for the Euro area. See Figure S1 in the online appendix.
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The public healthcare system in Mexico is heavily fragmented. Formal sector workers are cov-

ered by the Mexican Institute of Social Security (IMSS), and government workers by the Institute

for Social Security and Services for State Workers (ISSSTE). We focus on a third system of health-

care facilities administered by the Ministry of Health (SSA). The SSA hospital system provides

healthcare to informal sector workers and the unemployed. According to the 2012 National Health

Survey (ENSANUT), SSA covers 36 and 69% of the population in urban and rural areas, respec-

tively. SSA hospitals are on average somewhat smaller than other public hospitals.10

3 Data

We use three publicly available datasets. First, we obtain data on all admissions at SSA hospitals.

There were a total of 660 SSA hospitals operating in 2009 according to the data, with 50% of all

public sector hospitalizations occurring at SSA hospitals.11 We drop 48 hospitals with over 26 weeks

of zero hospitalizations, and construct a balanced panel of hospital-weeks by date of admission. We

calculate counts of hospitalizations and deaths due to ARIs and all other causes (non-ARIs) from

ICD-10 codes for the initial diagnosis recorded by physicians during admission and the reason for

discharge (death or improvement).12

Second, we use all new cases of ARIs on a weekly basis (from ICD-10 codes in epidemiological

surveillance data), gathered from all geocoded healthcare facilities.13 We then construct measures

of ARI prevalence in the vicinity of each SSA hospital by assigning facilities to SSA hospitals in two

ways. First, we consider the 10 healthcare facilities nearest to the SSA hospital, based on Euclidean

distance. Second, we include all healthcare facilities located within a 5 km radius of the hospital.

For each definition, we count the total ARIs from these neighboring facilities for each week.14

Lastly, we recover data on hospital-level infrastructure measured in 2013, the earliest year for

which such data are available. We focus on the total number of hospital beds and the presence

10On average, SSA hospitals had 63 beds and 2.4 operating rooms per hospital, compared to 86 beds and 3.1
operating rooms for IMSS and ISSSTE hospitals. Only 54% of SSA hospitals had over 30 beds, relative to 64% in
other public hospitals (SSA, 2007).

11According to ENSANUT, 21 and 17% of all hospitalizations occurred at privately-run hospitals in 2006 and 2012,
respectively, suggesting our data cover 40-42% of all hospitalizations.

12Table S2 in the online appendix shows the top five causes of hospital deaths for ARIs and non-ARIs.
13All public hospitals and clinics are required to report by law. Data for the private sector may be less reliable

since there is no enforcement in reporting.
14In a robustness check in the online appendix, we further define neighbors as the five closest healthcare facilities,

and as all facilities located within a 1 or 2 km radius, showing that our results hold.
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of an ICU, noting that these characteristics are more likely to remain unchanged over time than

staffing and equipment. We discuss limitations in Section 8.

Table 1 presents summary statistics for various years of our data. Panel A shows hospitalizations

and deaths for the SSA hospitals by diagnosis (ARIs vs non-ARIs). Panel B shows prevalence of

ARIs for different measures of neighboring healthcare facilities. Lastly, Panel C shows infrastructure

at SSA hospitals. Characterizing hospitals by number of beds, 13% of all small SSA hospitals

(bottom quintile of the distribution) are within 5 km of a larger SSA hospital and 18% are more

than 50 km away. Moreover, 12% of SSA hospitals without an ICU are within 5 km of an SSA

hospital with an ICU, while 42% are more than 50 km away from the nearest one (online appendix

Figure S5).

4 Empirical Strategy

We are interested in estimating the effect of increased hospital occupancy on hospital-level mortality

outcomes in a model of the following form:

outcomejw = β hospARIjw + θj + λw + νjw (1)

where outcomejw is an outcome of interest for hospital j in week w, ARIjw are ARI admissions in

the same hospital-week, θj and λw are hospital and week fixed effects (FE), respectively, and νjw

is the error term. The inclusion of hospital FE implies that we identify the effect off of changes

within each hospital, while the week FE account for overall seasonality.

However, such a regression may not allow for a causal interpretation. Without a clear under-

standing of what drives the variation in occupancy, it may be difficult to disentangle changes in

mortality that are due to hospital strain from those attributable to changes in patient composition.

For example, a surge in admissions due to an expansion of healthcare coverage or insurance is likely

to affect both busyness and patient composition, biasing the estimates in equation 1.

Therefore, exploiting quasi-exogenous variation in hospitalizations during the H1N1 pandemic

in 2009 and distinguishing between ARI admissions and non-ARI deaths, we follow an IV approach:

nonARIdeathsjw = α hospARIjw + θj + λw + εjw (2)
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where nonARIdeathsjw are non-ARI deaths in hospital j during week w, εjw is the error term, and

everything else is as defined above. Our endogenous variable of interest is congestion as measured

by ARI admissions, which we instrument with our measures of ARI cases at neighboring healthcare

facilities using a two-stage least squares procedure.

Focusing on ARI hospitalizations during the pandemic allows us to leverage shocks to hospital

occupancy that were arguably unexpected and uncorrelated with the underlying local demand prior

to the shock. However, estimates may still be biased since different hospitals may be attracting

different types and quantities of patients (for example, hospitals with highly skilled physicians may

receive more and sicker patients). Our IV approach deals with this potential issue.

Since counts of neighboring ARIs may be mechanically correlated with the number of nearby

facilities, we take two approaches. First, we fix the number of healthcare facilities at 10, regardless

of distance. Second, we fix the distance at 5 km, regardless of the number of neighbors. The IV

estimate may be interpreted as causal if the exclusion restriction holds, namely, that neighboring

ARIs had no direct impact on non-ARI mortality, except via their effect on ARI admissions.

We validate our IV approach by showing a strong first stage (the effect of neighboring ARIs

on ARI hospitalizations) and suggestive evidence that the exclusion restrictions holds (the effect

of neighboring ARIs on non-ARI hospitalizations, which should be zero if the pandemic is truly

a quasi-random shock). We also present the reduced-form effect of the instrument on non-ARI

deaths. These three estimates correspond to the reduced-form model in equation 1, substituting

the right-hand-side endogenous variable with ARI cases at neighboring facilities.

5 Main Results

Using our balanced panel of 612 SSA hospitals over 52 weeks in 2009, we present reduced-form

estimates of equation 1 with neighboring ARI cases as the independent variable and IV estimates

of equation 2 using a two-stage least squares procedure. We cluster our standard errors at the

hospital level throughout to allow for serial correlation in the error term. To account for differences

in size, patient burden, and the number of neighboring facilities across hospitals, we normalize all
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variables by taking the z-score.15 We show similar estimates for unnormalized variables, both in

levels and rates, in the online appendix.

Table 2 displays the results. Panel A assigns weekly ARIs from neighboring facilities as the sum

over the 10 nearest healthcare centers. Panel B uses the sum over all facilities within a 5 km radius.

Column 1 shows the effect of our (normalized) measure of neighboring ARIs on (normalized) ARI

hospitalizations at SSA hospitals. We estimate a strong first stage, indicating that a one sd increase

in neighboring ARIs led to a 0.11 sd increase in own ARI admissions. Hence, every nine neighboring

ARI cases were associated with one additional hospitalization. Given the average 32% increase in

ARIs at neighboring facilities in 2009 relative to the previous years (Table 1), we estimate between

13 and 32 additional admissions per week, equivalent to a 17 to 41% increase.

Column 2 shows an extension of the first stage, by estimating the effect of neighboring ARIs

on in-hospital mortality due to ARIs. Given the rise in ARI admissions, this could also lead to

increases in ARI deaths. Indeed, a one sd increase in ARIs at nearby healthcare facilities led to a

0.05 sd increment in ARI deaths.

Column 3 presents suggestive evidence that the exclusion restriction holds. If the variation in

neighboring ARIs is correlated with local demand conditions, then we would also see effects on non-

ARI hospitalizations. However, our estimates for the effect on non-ARI admissions are an order of

magnitude smaller, negative, and statistically indistinguishable from zero. This provides reassur-

ance that the increases in ARIs as measured by counts at nearby facilities were likely exogenous to

determinants of non-ARI deaths, except for their indirect effect via ARI hospitalizations.

Column 4 shows our main reduced-form result. We find a significant positive coefficient, indicat-

ing that a one sd increase in neighboring ARIs led to a 0.02 sd increase in deaths due to non-ARIs,

which implies one additional non-ARI hospital death for every 91 neighboring ARI cases.

Columns 5 and 6 correspond to our IV estimates. We first replicate our findings for hospital

admissions due to non-ARIs, obtaining again null effects. Further evidence that the exclusion

restriction holds is presented in online appendix Figure S6, with IV estimates that show that the

age distribution of non-ARI admissions is also unaltered. Taken together, this suggests that the

ARI shock did not change the quantity or composition of non-ARI patients.

15We subtract the hospital-specific mean and divide by the standard deviation, so that the normalized variable has
mean zero and a standard deviation of one. We use the mean and standard deviation across all years from 2007 to
2011 for this calculation. Results are very similar to just using 2009 data or limiting to pre-pandemic data.

8



Column 6 shows a positive and significant IV estimate for the effect of increased ARI hospi-

talizations on non-ARI in-hospital mortality. We find that a one sd increase in ARI admissions

led to a 0.17 sd increase in non-ARI deaths, or equivalently, that a one percent increase in ARI

hospitalizations (relative to the mean) increased non-ARI hospital deaths by 0.25%.16

We interpret our IV estimates as the local average treatment effect (LATE), which is the effect

for compliers: SSA hospitals that increased their ARI admissions in response to an increase in

nearby outbreaks of ARIs. We cannot speak to the effects for hospitals that would never (or always)

increase their ARI patient load, regardless of the number of nearby ARI cases. Nevertheless, this

is the causal parameter of interest for policy design.

The results in Table 2 hold under a series of robustness checks, all shown in the online appendix.

First, we consider alternative definitions of neighboring ARIs and additional controls in Table S5.

Specifically, we add flexible time trends by state and by quintiles of the share of neighboring facilities

under SSA management. We also control for the number of patients currently hospitalized. Second,

we examine IV log-log regressions where the dependent variable is either non-ARI deaths or the

non-ARI mortality rate in Table S6. Lastly, we estimate the effect of increased ARI hospitalizations

on non-ARI lengths of stay and the share of patients with an early discharge, defined as a length

of stay below the diagnosis-specific median in the 2007-2008 data, in Table S7. We find that a one

percent increase in ARI hospitalizations significantly decreased the average length of stay by 0.18%,

total hospital days by 0.13%, and increased the share of early discharges by 0.04%, consistent with

the effects of congestion on mortality documented above.

6 Non-Linearities and Heterogeneity

6.1 Tipping Points

We now ask whether these results may be non-linear in the size of the local ARI outbreak. Identify-

ing tipping points is important for hospital management. A visual inspection of the raw data in the

16To see this, first note from Table 1 that a 1% increase in hospitalizations relative to the mean and expressed in
sd is equal to 0.01 × 3.60/5.68. Then to express the coefficient in levels, multiply by the sd of the outcome β̂ × sdy.
Lastly, divide by the mean of the outcome to express as a percentage. Hence, for a one percent increase in ARI

hospitalizations, we estimate a
0.01×(3.60/5.68)×β̂×sdy

ȳ
percent change in the outcome.
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form of a binned scatterplot suggests that tipping points matter and are present in the top quintile

of the distribution of the size of the local ARI outbreak (see Figure S7 in the online appendix).

Hence, we are interested in estimating the effect by quintile of our measure of neighboring ARIs.

We present reduced-form evidence, since an IV estimation would require a strong instrument for

each quintile. We estimate equation 1, substituting the explanatory variable with indicators for

each quintile of the normalized measure of neighboring ARIs.

Figure 2 presents the results. Each coefficient series corresponds to a different definition of

neighboring ARIs. The bars show 90 and 95% confidence intervals from robust standard errors

clustered at the hospital level. The plot on the left shows the first stage. Estimates are significant

and fairly linear, indicating a positive relationship between outbreaks and ARI admissions.

The plot on the right shows the effect on non-ARI deaths. Our coefficients for the first, second,

and fourth quintile are all small and statistically indistinguishable from zero (the third quintile is

the reference category). The estimate for the fifth quintile is positive and significant, indicating

that hospitals in areas with large ARI outbreaks saw increases in non-ARI in-hospital mortality.17

Given the linearity of the first stage, this pattern is not driven by non-linearities in admissions. This

suggests the existence of non-linearities in the effect of increased hospital occupancy on mortality,

consistent with the literature identifying tipping points for overcrowding (Kuntz et al., 2015).18

6.2 Hospital Infrastructure

We explore heterogeneous effects by hospital infrastructure, presenting IV estimates of equation 2

by stratifying the sample. We consider quintiles of the total number of hospital beds and whether

the hospital has an ICU. Although hospitals without an ICU also tend to be smaller, there is

sufficient variation suggesting that this is an informative result beyond size.19

Table 3 shows our estimates. Columns 1-5 stratify the sample by quintiles of total hospital

beds. Our IV estimate is large and significant for the first quintile, with smaller and insignificant

estimates for the remaining four. Hence, for the same increase in ARI hospitalizations (a one sd),

smaller hospitals (with 18 or fewer beds) were the ones that saw increases in non-ARI mortality.

17Figure S8 in the online appendix shows a similar pattern by ventiles instead of quintiles.
18Note that the medical literature has found overcrowding at hospitals that are at 85% capacity (Madsen et al.,

2014). Although this is not a one-to-one mapping, our non-linearities in the top quintile are in line with these findings.
19Medical staff at hospitals without an ICU may also lack training for providing intensive care necessary during

shocks like epidemics (Volkow et al., 2011).
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Columns 6 and 7 show large and significant effects for SSA hospitals without an ICU, and smaller

and insignificant estimates for those with an ICU, respectively.

Altogether, this suggests that infrastructure plays a key role in the damaging effects of hospital

overcrowding. If smaller hospitals are also more likely understaffed and lacking in medical supplies,

this finding might also reflect other infrastructure shortcomings.

Given that we only observe infrastructure until 2013, these results should be interpreted with

caution. We argue that potentially misclassifying hospitals would lead to attenuation bias. First,

we are more likely to misclassify hospitals in contiguous quintiles (i.e., it is unlikely that a hospital

would change quintiles drastically from 2009 to 2013). Given our effects in the first quintile, the

potential bias is coming from hospitals that became somewhat larger or smaller over time. Second,

it is unlikely that a hospital would lose its ICU, so that we capture a weighted average of mostly

hospitals without an ICU and some with an ICU. Section 8 further discusses this issue.

7 Implications for Policy and Management

We now discuss the managerial and policy implications of our findings. Three main policy responses

could mitigate the mortality impacts. First, managers could better allocate patients across hospitals

to avoid overcrowding (Kuntz et al., 2015; Deo et al., 2013). Second, doctors may change admission

decisions on the marginal patient and treatment choices of hospitalized patients through early

discharges. Lastly, managers may transform hospital capacity.

7.1 Patient Reallocation

Our effects of hospital overcrowding on mortality are driven by small and non-ICU hospitals.

Stratifying these hospitals by distance to the nearest larger hospital and by distance to the nearest

ICU, we find that the mortality effects are present along the entire distribution of these distances

(Figure S12 in the online appendix).20 This suggests that hospitals did not reallocate patients,

even when there were larger and ICU hospitals nearby.

To better understand the scope for reallocating patients, we construct weekly measures of

available hospital beds at larger and ICU hospitals within 5 km of small and non-ICU hospitals.

20The variance of our estimates for hospitals that are closest to the nearest larger or ICU hospital is sizable. This
may reflect that at least some of these hospitals reallocated patients and therefore did not see mortality effects.
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We find that there were over 15 available beds at nearby larger and ICU hospitals for around 10%

of weeks (online appendix Figure S13). Weighting availability by non-ARI deaths at the small

and non-ICU hospitals increases these numbers to 25 and 30%, respectively, suggesting that there

was some concentration of deaths at hospitals with available beds nearby. Hence, up to 30% of

our estimated deaths may have been averted by better allocating patients to these larger and ICU

hospitals.

Under centralized management, this would be a relatively low-cost intervention. However, this

policy lever is limited by both the share of geographically isolated hospitals and the number of

beds available in nearby hospitals at any given moment. In this particular setting, 42% of small

hospitals and 18% of non-ICU hospitals are over 50 km away from the nearest larger hospital or

ICU (online appendix Figure S5). It is then unlikely that this hospital system could rely solely on

reallocation to mitigate the mortality effects.

7.2 Admission and Treatment Decisions

To understand which conditions concentrate the estimated mortality effects, we stratify the sample

by the diagnosis-specific mortality rate at baseline (2007-2008). As expected, we find tight zeros

for conditions with a baseline mortality rate of zero. We then find small and weak effects for

low-mortality conditions, and large effects for high-mortality diagnostic codes (see online appendix

Figure S14). This suggests that our effects are driven mostly by riskier diagnoses that (presum-

ably) require more care. Although hospitals may have changed their marginal admissions, we find

insignificant effects for hospitalizations across all three diagnostic groups.

Online appendix Table S7 shows that increased ARI admissions led to shorter non-ARI hospital

stays and a larger share of early discharges. This suggests that doctors altered their treatment de-

cisions. Stratifying by mortality rates, it appears that high-mortality diagnostic codes are the ones

for which the average length of stay declined significantly, although the share of early discharges also

increased for low-mortality codes (online appendix Table S8). Unfortunately, we cannot measure

readmission rates or out-of-hospital mortality.

These supplementary estimates suggest that mortality was concentrated in riskier diagnoses,

and that hospitals did not turn away patients as a way to avoid congestion, although overcrowded

hospitals were more likely to discharge patients early, particularly those with more severe diagnoses.
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Given that we cannot observe other patient health measures, we caution against concluding that

strategically changing admission decisions might have unambiguously improved patient outcomes.

7.3 Hospital Transformation

Hospital managers could also transform hospital capacity, even just temporarily. Some evidence

suggests that hospitals in 2009 implemented triage systems and adapted the existing infrastructure

to deal with increased patient flows (Volkow et al., 2011). However, systematic data are unavailable.

Instead, we turn then to data from the current Covid-19 outbreak.

Focusing on small and non-ICU hospitals, we find that hospitals that are farther away from

the nearest larger hospital or ICU are more likely to have undergone a capacity expansion in 2020,

although resources have also been devoted to hospitals with nearby alternatives (online appendix

Figure S15). This suggests perhaps that policy-makers learned from the 2009 experience. Nev-

ertheless, managers under strict budgets may be unable to expand capacity. Our results suggest,

however, that given the extent to which overcrowding may be avoided through patient reallocation

for a large set of hospitals, resources for hospital transformation could be more efficiently allocated

if directed more intensively toward geographically isolated facilities.

8 Study Limitations

Observing hospital infrastructure until 2013 is an important data limitation. Using aggregate data

on SSA healthcare units, online appendix Figure S16 shows the municipality-level distribution and

correlation in 2009 and 2013, showing very few changes in infrastructure over time. We also find no

significant correlation between these changes and the municipality-level size of the ARI outbreak.

We complement this information with an estimate of the hospital-level number of beds in our

data. We calculate the maximum patient load per hospital during 2007-2008. Evidently, this might

be an underestimate of the true hospital capacity. Figure S17 in the online appendix shows the

correlation between this measure and our 2013 infrastructure data, suggesting that the latter is not

a bad proxy of 2009 data.

As for our methodology, our estimates are internally valid and represent the LATE, as discussed

above. However, our local effects may not necessarily be externally valid. We cannot infer the effects
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of overcrowding on mortality for hospitals that did not respond to the local outbreak, since IV is

uninformative for hospitals that were unaffected by the instrument. Our findings may also not

extend to other hospital systems in Mexico that might have responded differently. Nevertheless,

our LATE estimates are the relevant measure of how congestion due to health shocks may result in

in-hospital mortality increases, and may be informative for the design of mitigating policies from a

managerial perspective, as discussed above.

9 Conclusion

This paper revisits the 2009 H1N1 pandemic in Mexico to ask whether shocks in hospital occupancy

may increase in-hospital mortality. Leveraging an IV approach to overcome the identification

problems, we estimate that a one percent increase in hospital admissions led to a 0.25% increase in

non-ARI hospital deaths. We show that this relationship is non-linear in the size of the local ARI

outbreak, and that the effects are concentrated at hospitals that are small and lack an ICU.

Supplementary analyses suggest that a combination of patient reallocation for hospitals that

are close to larger hospitals and capacity expansion for those that are more geographically isolated

would be a relatively cost-effective response to a shock to hospital occupancy. However, capacity

constraints may be binding under large surges in hospital admissions – due to, for example, more

severe epidemics – which in turn may limit the effectiveness of reallocation policies. Overall, these

lessons may provide valuable insights for managing the Covid-19 pandemic.
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Figures and Tables

Figure 1:
Epidemiological Trends of ARIs
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Notes: This graph shows the nation-wide epidemiological trends of ARIs for each year from 2007 to 2011.

Figure 2:
Effect of ARI Outbreaks on Non-ARI Mortality by Size of the

Outbreak
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Notes: These graphs show OLS estimates of (normalized) hospitalizations due to ARIs (left) and (nor-
malized) deaths due to non-ARIs (right) on the (normalized) measure of neighboring ARIs by quintiles.
Each coefficient series corresponds to a different definition of neighboring healthcare facilities. Regressions
include hospital and week FE. Bars correspond to 90 and 95% confidence intervals, from standard errors
clustered at the hospital level.
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Table 1:
Summary Statistics

2009 only 2007-2008 2010-2011 2013

A. Hospital-week outcomes

Total hospitalizations 80.68 77.41 83.98
(97.61) (86.78) (101.23)

Hospitalizations due to ARIs 3.60 3.08 3.39
(5.68) (4.82) (5.70)

Hospitalizations due to non-ARIs 75.43 67.31 76.59
(93.96) (83.02) (97.07)

Total deaths 1.66 1.52 1.66
(3.61) (3.28) (3.53)

Deaths due to ARIs 0.23 0.17 0.21
(0.70) (0.53) (0.63)

Deaths due to non-ARIs 1.43 1.35 1.45
(3.22) (3.00) (3.18)

B. Clinic-week ARIs of assigned neighbors

Main definitions:
ARIs of 10 nearest neighbors 498.89 378.34 428.38

(626.11) (444.46) (518.49)
Neighboring ARIs within 5 km 1143.56 857.16 975.15

(2000.61) (1452.30) (1643.84)
Alternative definitions:

ARIs of 5 nearest neighbors 299.64 231.84 260.69
(372.55) (272.80) (316.77)

Neighboring ARIs within 1 km 171.69 134.43 150.65
(278.72) (204.46) (235.71)

Neighboring ARIs within 2 km 350.75 269.28 302.50
(520.04) (380.30) (438.95)

C. Hospital-level infrastructure

Total beds 72.47
(98.57)

Hospital has ICU 0.28
(0.45)

Total beds in ICU 2.68
(6.74)

Observations 31,824 63,648 63,648 612

Notes: This table presents summary statistics for 2009 and other years. Means are shown,
with standard deviations in parentheses. Panel A shows hospitalizations and deaths at the
hospital-week level. Panel B shows total weekly ARI cases for various definitions of neighboring
healthcare facilities. Panel C shows infrastructure at the hospital level (these data are only
available for 2013).
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Table 2:
Effect of ARI Outbreaks on Hospitalizations and Mortality

OLS IV

Hosp. Deaths Hosp. Deaths Hosp. Deaths
ARIs ARIs Non-ARIs Non-ARIs Non-ARIs Non-ARIs
(1) (2) (3) (4) (5) (6)

A. 10 nearest neighbors

Neighboring ARIs 0.112*** 0.049*** -0.001 0.019***
(0.009) (0.008) (0.008) (0.006)

Hospitalizations due to ARIs -0.007 0.172***
(0.068) (0.059)

Observations 31,824 31,824 31,824 31,824 31,824 31,824
R-squared 0.167 0.040 0.393 0.055
Kleibergen-Paap F statistic 158.66 158.66

B. Neighbors within 5 km

Neighboring ARIs 0.113*** 0.051*** -0.005 0.020***
(0.009) (0.008) (0.008) (0.006)

Hospitalizations due to ARIs -0.043 0.179***
(0.068) (0.059)

Observations 31,824 31,824 31,824 31,824 31,824 31,824
R-squared 0.167 0.040 0.393 0.055
Kleibergen-Paap F statistic 157.09 157.09

Mean dependent variable 3.60 0.23 75.43 1.43 75.43 1.43
SD dependent variable 5.68 0.70 93.96 3.22 93.96 3.22

Notes: This table presents estimates of the effect of ARI outbreaks. Panel A assigns neighboring ARIs based
on the 10 nearest healthcare facilities. Panel B uses all healthcare facilities within a 5 km radius. Columns 1-4
show OLS estimates of the (normalized) outcome variable on the (normalized) measure of neighboring ARIs.
Columns 5-6 present IV estimates, instrumenting the hospital’s own (normalized) ARI admissions with the
(normalized) measure of neighboring ARIs. Regressions include hospital and week FE. Standard errors are
clustered at the hospital level. The mean and standard deviation of the non-normalized dependent variable
are shown in the last two rows.
*** p<0.01, ** p<0.05, * p<0.1

23



Table 3:
Effect of ARI Outbreaks on Non-ARI Mortality by Hospital

Infrastructure

Quintiles of number of beds Has ICU

q1 q2 q3 q4 q5 No Yes
(1) (2) (3) (4) (5) (6) (7)

A. 10 nearest neighbors

Hospitalizations due to ARIs 0.560** 0.049 0.180 0.171 0.182 0.242*** 0.107
(0.271) (0.147) (0.124) (0.105) (0.145) (0.079) (0.101)

Observations 6,500 6,240 6,552 6,188 6,344 22,984 8,840
Kleibergen-Paap F statistic 11.6 25.2 44.3 41.5 32.2 97.8 53.1

B. Neighbors within 5 km

Hospitalizations due to ARIs 0.541* 0.124 0.183 0.164 0.134 0.250*** 0.107
(0.277) (0.154) (0.130) (0.105) (0.137) (0.082) (0.098)

Observations 6,500 6,240 6,552 6,188 6,344 22,984 8,840
Kleibergen-Paap F statistic 11.3 21.4 44.7 44.1 29.9 92.1 51.4

Mean dependent variable 0.34 0.11 0.51 1.35 4.87 0.50 3.83
SD dependent variable 0.98 0.39 0.90 1.56 5.64 2.00 4.33

Notes: This table presents IV estimates of the effect of ARI outbreaks, stratifying the main sample by
measures of hospital infrastructure. Panel A assigns neighboring ARIs based on the 10 nearest healthcare
facilities. Panel B uses all healthcare facilities within a 5 km radius. Columns 1-5 show results for each
quintile of the distribution of hospitals by total number of beds. Columns 6-7 stratify hospitals by whether
they have an ICU. All variables are normalized as before. Regressions include hospital and week FE.
Standard errors are clustered at the hospital level. The mean and standard deviation of the non-normalized
dependent variable are shown in the last two rows.
*** p<0.01, ** p<0.05, * p<0.1
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Supplementary Tables and Figures

Table S1:
Existing Literature of the Effects of Hospital Strain on Mortality

Analyzes Instruments for Explores
Paper Mortality Effects Strain or Occupancy Non-Linearities

Ball et al. (2006) Yes No No
Bekmezian and Chung (2012) No No No
Chalfin et al. (2007) Yes No No
Clark and Normile (2007) Yes No No
Clark and Normile (2012) Yes No No
Derose et al. (2014) No No No
Evans and Kim (2006) No No Yes
Gabler et al. (2013) Yes No No
Gattinoni et al. (2004) Yes No No
Gilligan et al. (2008) Yes No No
Intas et al. (2012) Yes No No
Iwashyna et al. (2009) No No Yes
Jenkins et al. (2015) Yes No Yes
Madsen et al. (2014) Yes No No
Marcin and Romano (2004) No No No
O’Callaghan et al. (2012) No No No
Pascual et al. (2014) Yes No No
Plunkett et al. (2011) Yes No No
Robert et al. (2012) Yes No No
Rubinson et al. (2013) Yes No No
Schilling et al. (2010) Yes No No
Schwierz et al. (2012) No No∗ No
Serafini et al. (2015) Yes No No
Singer et al. (2011) Yes No Yes
Sprivulis et al. (2006) Yes No Yes
Stowell et al. (2013) Yes No No
Tarnow-Mordi et al. (2000) Yes No No
UK Neonatal Staffing Study Group (2002) Yes No No
Wagner et al. (2013) No No No
Yergens et al. (2015) Yes No Yes

Notes: This table lists all papers relating measures of hospital strain and mortality reviewed by Eriksson et al. (2017),
indicating whether they find an effect on mortality, whether they use an instrumental variable approach to deal with
potential endogeneity in admissions, and whether they explore if there are non-linearities in the impacts of strain on
mortality. ∗ Schwierz et al. (2012) uses a measure of unexpected shocks to occupancy as the explanatory variable.
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Table S2:
Most Common Causes of In-Hospital Mortality

ICD-10 code Description of diagnosis

2007-2008 data
ARIs:

J18 Pneumonia, organism unspecified
J22 Unspecified acute lower respiratory infection
J44 Other chronic obstructive pulmonary disease
J81 Pulmonary edema
J96 Respiratory failure, not elsewhere classified

Non-ARIs:
A41 Other sepsis
E11 Type II diabetes mellitus
N18 Chronic kidney failure
P07 Disorders related to short gestation and low birth weight,

not classified elsewhere
S06 Intracranial injury

2009 data
ARIs:

J15 Bacterial pneumonia, not elsewhere classified
J18 Pneumonia, organism unspecified
J44 Other chronic obstructive pulmonary disease
J81 Pulmonary edema
J96 Respiratory failure, not elsewhere classified

Non-ARIs:
A41 Other sepsis
E11 Type II diabetes mellitus
N18 Chronic kidney failure
P07 Disorders related to short gestation and low birth weight,

not classified elsewhere
S06 Intracranial injury

Notes: This table shows the five most common causes of in-hospital mortality using
data from before 2009 and from 2009 only. We distinguish between ARIs and non-
ARIs. We show the three-digit ICD-10 codes, along with the description of each
diagnosis.
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Table S3:
Descriptives of Assigned Neighbors

Main definitions Alternative definitions for robustness
10 nearest Neighbors 5 nearest Neighbors Neighbors
neighbors within 5 km neighbors within 2 km within 1 km

Total neighbors assigned 6.58 12.67 4.25 4.49 2.57
(3.18) (14.72) (1.21) (3.56) (2.10)

Average distance to neighbors 1.86 2.25 1.53 1.00 0.54
(0.94) (1.01) (0.92) (0.43) (0.24)

Share SSA neighbors 0.55 0.55 0.54 0.52 0.50
(0.27) (0.25) (0.29) (0.33) (0.40)

Share IMSS neighbors 0.28 0.28 0.29 0.30 0.29
(0.22) (0.21) (0.24) (0.29) (0.35)

Share ISSSTE neighbors 0.11 0.11 0.12 0.12 0.15
(0.13) (0.13) (0.15) (0.18) (0.26)

Share private healthcare neighbors 0.03 0.02 0.02 0.03 0.03
(0.07) (0.06) (0.09) (0.10) (0.12)

Share neighbors other public institutions 0.04 0.03 0.03 0.03 0.04
(0.09) (0.08) (0.10) (0.09) (0.14)

Observations 612 612 612 573 455

Notes: This table presents summary statistics of the neighbors assigned to hospitals under each of the two main definitions
used in the text, and the three alternative definitions presented as robustness checks. Means are shown, with standard
deviations in parentheses. SSA are healthcare facilities run by the Ministry of Health (same as the hospitals in our sample).
IMSS and ISSSTE are government healthcare systems for formal workers and government workers, respectively.

Table S4:
Correlation between ARI Hospitalizations and Outcomes

Deaths Hosp. Deaths
ARIs Non-ARIs Non-ARIs
(1) (2) (3)

Hospitalizations due to ARIs 0.226*** 0.042*** 0.019***
(0.014) (0.008) (0.007)

Observations 31,824 31,824 31,824
R-squared 0.090 0.394 0.055

Mean dependent variable 0.23 75.43 1.43
SD dependent variable 0.70 93.96 3.22

Notes: This table presents the correlation between (normalized) ARI hos-
pitalizations and other (normalized) outcomes from an OLS regression with
hospital and week fixed effects. Standard errors are clustered at the hospital
level. The mean and standard deviation of the non-normalized dependent
variable are shown in the last two rows.
*** p<0.01, ** p<0.05, * p<0.1
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Table S5:
Robustness Checks: Alternative Definitions of Neighbors and

Additional Controls

I. Alternative definitions of neighbors
Hosp. Non-ARIs Deaths Non-ARIs

5 nearest Neighbors Neighbors 5 nearest Neighbors Neighbors
neighbors within 1 km within 2 km neighbors within 1 km within 2 km

(1) (2) (3) (4) (5) (6)

Hospitalizations due to ARIs 0.005 -0.065 -0.027 0.144** 0.249** 0.122*
(0.077) (0.113) (0.079) (0.061) (0.100) (0.067)

Observations 31,824 23,660 29,796 31,824 23,660 29,796
Kleibergen-Paap F statistic 127.4 49.9 107.3 127.4 49.9 107.3

Mean dependent variable 75.43 77.60 77.27 1.43 1.51 1.47
SD dependent variable 93.96 97.01 95.51 3.22 3.42 3.28

II. Additional controls
Hosp. Non-ARIs Deaths Non-ARIs

State SSA share Patient State SSA share Patient
×week FE ×week FE load ×week FE ×week FE load

(7) (8) (9) (10) (11) (12)

A. 10 nearest neighbors

Hospitalizations due to ARIs -0.0195 -0.0158 -0.0280 0.207** 0.169*** 0.166***
(0.114) (0.070) (0.061) (0.100) (0.059) (0.059)

Observations 31,824 31,824 31,824 31,824 31,824 31,824
Kleibergen-Paap F statistic 67.41 150.75 158.62 67.41 150.75 158.62

B. Neighbors within 5 km

Hospitalizations due to ARIs -0.0818 -0.0205 -0.0612 0.224** 0.180*** 0.174***
(0.121) (0.069) (0.061) (0.106) (0.061) (0.059)

Observations 31,824 31,824 31,824 31,824 31,824 31,824
Kleibergen-Paap F statistic 59.2 145.5 156.9 59.2 145.5 156.9

Mean dependent variable 75.43 75.43 75.43 1.43 1.43 1.43
SD dependent variable 93.96 93.96 93.96 3.22 3.22 3.22

Notes: This table presents a series of robustness checks on the main results. The first part of the table shows IV estimates
under different definitions of neighbors, for non-ARI hospitalizations (columns 1-3) and deaths (columns 4-6), instrumenting
(normalized) hospitalizations due to ARIs with the (normalized) measure of neighboring ARIs. The second part of the table
returns to the baseline definitions of neighbors (10 nearest neighbors in panel A, and all neighbors within 5 km in panel
B). Columns 7 and 10 include additional controls in the form of indicators for each week interacted with indicators for each
state. Columns 8 and 11 include indicators for each week interacted with indicators for quintiles of the share of neighboring
healthcare facilities that are managed by SSA. Columns 9 and 12 include controls for the patient load in each hospital-week.
Regressions include hospital and week FE. Standard errors are clustered at the hospital level. The mean and standard
deviation of the non-normalized dependent variable are shown in the last two rows of each table section.
*** p<0.01, ** p<0.05, * p<0.1
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Table S6:
Robustness Checks: Alternative Specification of Variables

IHS IHS non-ARI
non-ARI deaths mortality rate

(1) (2) (3) (4)

IHS Hospitalizations due to ARIs 0.0996* 0.0959* 0.123* 0.135**
(0.059) (0.054) (0.065) (0.064)

Observations 31,824 31,824 31,824 31,824
Kleibergen-Paap F statistic 150.6 146.0 150.6 146.0
Measure of neighbors:

10 nearest neighbors X X
Neighbors within 5 km X X

Mean dependent variable 1.43 1.43 1.22 1.22
SD dependent variable 3.22 3.22 2.57 2.57

Notes: This table presents IV estimates of the effect of ARI outbreaks using alter-
native specifications for our main variables. Columns 1 and 2 consider the inverse
hyperbolic sine (IHS) of non-ARI deaths as the dependent variable. Columns 3 and 4
consider the IHS of the hospital mortality rate due to non-ARIs. We instrument the
endogenous variable, IHS of hospitalizations due to ARIs, with normalized measures
of neighboring ARIs. Regressions include hospital and week FE. Standard errors are
clustered at the hospital level. The mean and standard deviation of the dependent
variable (before the IHS transformation) are shown.
*** p<0.01, ** p<0.05, * p<0.1

Table S7:
Effect of ARI Outbreaks on Non-ARI Hospitalization Lengths of Stay

Average Total Share
length of stay hospital days early discharge

(1) (2) (3) (4) (5) (6)

Hospitalizations due to ARIs -0.161*** -0.141*** -0.122** -0.128** 0.0247** 0.0205*
(0.055) (0.054) (0.059) (0.061) (0.011) (0.011)

Observations 31,824 31,824 31,824 31,824 31,824 31,824
Kleibergen-Paap F statistic 158.7 157.1 158.7 157.1 158.7 157.1
Measure of neighbors:

10 nearest neighbors X X X
Neighbors within 5 km X X X

Mean dependent variable 3.12 3.12 211.6 211.6 0.33 0.33
SD dependent variable 5.87 5.87 352.1 352.1 0.20 0.20

Notes: This table presents IV estimates on (normalized) measures of hospital stay lengths for non-ARIs,
instrumenting (normalized) hospitalizations due to ARIs with the (normalized) measure of neighboring ARIs.
Columns 1 and 2 consider the (normalized) average of hospital stay lengths. Columns 3 and 4 consider the
(normalized) total hospital days (average length × hospitalizations). Columns 5 and 6 show the share of early
discharges defined as below the median diagnosis-specific length of stay observed in 2007 and 2008. Regressions
include hospital and week FE. Standard errors are clustered at the hospital level. The mean and standard
deviation of the non-normalized dependent variable are shown in the last two rows.
*** p<0.01, ** p<0.05, * p<0.1
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Table S8:
Effect of ARI Outbreaks on Non-ARI Hospitalization Lengths of Stay

by Diagnosis-Level Mortality Rates

Zero mortality Low Mortality High mortality

(1) (2) (3) (4) (5) (6)

A. Average length of stay

Hospitalizations due to ARIs -0.0137 0.0002 0.0206 0.0192 -0.181*** -0.181***
(0.055) (0.058) (0.060) (0.061) (0.057) (0.056)

Observations 31,824 31,824 31,824 31,824 31,824 31,824
Mean dependent variable 0.18 0.18 0.78 0.78 2.22 2.22
SD dependent variable 1.06 1.06 1.82 1.82 5.06 5.06

B. Share early discharges

Hospitalizations due to ARIs 0.0034 0.0032 0.0142** 0.0136** 0.0071 0.0037
(0.003) (0.003) (0.007) (0.007) (0.009) (0.010)

Observations 31,824 31,824 31,824 31,824 31,824 31,824
Mean dependent variable 0.02 0.02 0.13 0.13 0.18 0.18
SD dependent variable 0.05 0.05 0.13 0.13 0.16 0.16

Measure of neighbors:
10 nearest neighbors X X X
Neighbors within 5 km X X X

Notes: This table presents IV estimates on (normalized) measures of hospital stay lengths for non-ARIs, in-
strumenting (normalized) hospitalizations due to ARIs with the (normalized) measure of neighboring ARIs, and
distinguishing between diagnoses based on their pre-2009 mortality rate. Zero mortality refers to conditions for
which we do not observe any deaths in 2007-2008. Low and high mortality correspond to below and above the
median death rate, respectively. Panel A considers the (normalized) average of hospital stay lengths. Panel B
shows the share of early discharges defined as below the median diagnosis-specific length of stay observed in
2007 and 2008. Regressions include hospital and week FE. Standard errors are clustered at the hospital level.
The mean and standard deviation of the non-normalized dependent variable are shown.
*** p<0.01, ** p<0.05, * p<0.1
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Table S9:
Effect of ARI Outbreaks on Non-ARI Hospitalizations by Hospital

Infrastructure

Quintiles of number of beds Has ICU

q1 q2 q3 q4 q5 No Yes
(1) (2) (3) (4) (5) (6) (7)

A. 10 nearest neighbors

Hospitalizations due to ARIs 0.239 -0.096 0.176 -0.112 -0.024 0.056 -0.045
(0.222) (0.176) (0.129) (0.144) (0.173) (0.086) (0.127)

Observations 6,500 6,240 6,552 6,188 6,344 22,984 8,840
Kleibergen-Paap F statistic 11.6 25.2 44.3 41.5 32.2 97.8 53.1

B. Neighbors within 5 km

Hospitalizations due to ARIs 0.171 -0.148 0.174 -0.105 -0.115 0.026 -0.074
(0.220) (0.197) (0.131) (0.141) (0.166) (0.089) (0.120)

Observations 6,500 6,240 6,552 6,188 6,344 22,984 8,840
Kleibergen-Paap F statistic 11.3 21.4 44.7 44.1 29.9 92.1 51.4

Mean dependent variable 30.03 21.69 51.27 88.78 186.73 42.09 162.11
SD dependent variable 40.04 16.12 31.00 54.60 142.74 52.10 119.68

Notes: This table presents IV estimates of the effect of ARI outbreaks on non-ARI hospitalizations, stratifying
the main sample by measures of hospital infrastructure. Panel A assigns neighboring ARIs based on the 10 nearest
healthcare facilities. Panel B uses all healthcare facilities within a 5 km radius. Columns 1-5 show results for each
quintile of the distribution of hospitals by total number of beds. Columns 6-7 stratify hospitals by whether they
have an ICU. All variables are normalized as before. Regressions include hospital and week FE. Standard errors
are clustered at the hospital level. The mean and standard deviation of the non-normalized dependent variable
are shown in the last two rows.
*** p<0.01, ** p<0.05, * p<0.1
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Figure S1:
Hospital Beds and Medical Personnel per 1,000 in Different Regions of

the World
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Notes: The graph on the left shows hospital beds per 1,000 people and the one on the right shows medical staff
(doctors, nurses and midwives) for different regions and countries in the world. Data correspond to the available
measures closest to 2009, considering 2007 to 2010. Data available at https://ourworldindata.org/grapher/

hospital-beds-per-1000-people and https://data.worldbank.org.
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Figure S2:
Spatial Distribution of Hospitalizations, Deaths, and Neighboring ARIs

(a) Total hospitalizations (b) Total deaths

(c) ARIs from 10 nearest neighbors (d) ARIs from neighbors within 5 km

(e) Hospital Characteristics

Notes: These maps show the spatial distribution of SSA hospitals used in the estimating sample. The top left
map classifies hospitals by quintiles of the total number of hospitalizations in 2009, the top right map by the total
number of deaths, the middle left map by ARIs from the 10 nearest neighboring healthcare facilities, the middle
right map from all neighbors within 5 km, and the bottom map shows hospitals by size and whether they have an
ICU. Small hospitals are in the bottom quintile of number of beds.
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Figure S3:
Distribution of Distance from Hospital to Assigned Neighbors
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Notes: These graphs show histograms for the distribution of distance from the SSA hospitals to their assigned
neighbors, under each of the five definitions. The first two definitions are the main ones used in the text, while the
other three are used in the robustness checks.
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Figure S4:
Correlation between ARIs from 10 Nearest Neighbors and All

Neighbors Within 5 km
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(b) Average weekly ARIs in 2009

Notes: These plots correlate the ARIs assigned from the 10 nearest neighbors to the hospital with those from all
neighboring healthcare facilities within 5 km. The plot on the right uses the total ARIs reported in 2009, while
the plot on the left calculates the average ARIs per week. The 45 degree line is shown, as well as the line of best
fit from a simple OLS regression.
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Figure S5:
Distribution of Distance from Small Hospitals to Nearest Larger

Hospital and from Hospitals without ICU to Nearest ICU
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Notes: The plot on the top left shows a histogram for small hospitals (those in the bottom quintile of hospital
beds) of the distance to the nearest larger hospital (any hospital not in the bottom quintile). The graph on the top
right shows the corresponding box plot. The plot on the bottom left shows a histogram for hospitals without an
ICU for the distance to the nearest ICU. The graph on the bottom right shows the corresponding box plot. Any
distance above 100 km is capped at 100 for the histograms.
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Figure S6:
Effect of ARI Outbreaks on Age Distribution of Non-ARI

Hospitalizations
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Notes: This plot shows IV estimates of shares of hospitalizations due to non-ARIs for different age groups, in-
strumenting (normalized) hospitalizations due to ARIs with the (normalized) measure of neighboring ARIs. Each
coefficient corresponds to a separate regression. Each series corresponds to a different definition of neighboring
healthcare facilities. Regressions include hospital and week FE. Bars correspond to 95% confidence intervals, from
standard errors clustered at the hospital level.

Figure S7:
Relationship Between Non-ARI Mortality and ARI Outbreaks
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(b) Neighbors within 5 km

Notes: These graphs show a scatterplot of non-ARI deaths and ARI outbreaks. The plot on the left considers the
10 nearest neighbors, the one on the right all neighbors within 5 km. We partition the (normalized) neighboring
ARIs into 20 bins and calculate the mean (normalized) deaths due to non-ARIs.
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Figure S8:
Effect of ARI Outbreaks on Non-ARI Mortality by Ventiles of the

Outbreak
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(b) Neighbors within 5 km

Notes: These graphs show OLS estimates of (normalized) deaths due to non-ARIs on the (normalized) measure of
neighboring ARIs by ventiles. Each plot corresponds to a different definition of neighboring healthcare facilities.
Regressions include hospital and week FE. For clarity, we plot the point estimates only.

Figure S9:
Effect of ARI Outbreaks on Non-ARI Hospitalizations by Size of the

Outbreak
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Notes: This plot shows OLS estimates of hospitalizations due to non-ARIs on the (normalized) measure of neigh-
boring ARIs by quintiles. Each coefficient series corresponds to a different definition of neighboring healthcare
facilities. Regressions include hospital and week FE. Bars correspond to 90 and 95% confidence intervals, from
standard errors clustered at the hospital level.
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Figure S10:
Total Hospital Beds and ICU Beds
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Notes: These plots describe hospital capacity as measured in 2013. The plot on the left shows histograms of total
hospital beds, stratifying the sample between hospitals with and without an ICU. The plot on the right shows the
correlation between total beds and total ICU beds for all hospitals.

Figure S11:
Correlation between Total Hospital Beds and Hospitalizations
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(b) Data for 2007 and 2008

Notes: These plots correlate the total number of hospital beds with the average weekly hospital admissions,
distinguishing between hospital with and without an ICU. The plot on the left uses data from 2009, while the plot
on the right uses pre-pandemic data.
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Figure S12:
IV Estimates by Distance to Larger Hospitals and Hospitals with an

ICU
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Notes: The plot on the left shows IV estimates on non-ARI deaths for small hospitals (bottom quintile of hospital
beds) by terciles of distance to the nearest larger hospital (any hospital not in the bottom quintile), instrumenting
(normalized) hospitalizations due to ARIs with the (normalized) measure of neighboring ARIs. The plot on the
right repeats the exercise for hospitals without an ICU, stratifying by distance to the nearest ICU. Each coefficient
corresponds to a separate regression. Each series corresponds to a different definition of neighboring healthcare
facilities. Regressions include hospital and week FE. Bars correspond to 90 and 95% confidence intervals, from
standard errors clustered at the hospital level.
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Figure S13:
Available Beds within 5 km by Hospital Type
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(c) Hospitals without ICU (unweighted)
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Notes: These plots show the average number of available beds within a 5 km radius for each hospital-week. The top
panel considers available beds at large hospitals located within 5 km of each small hospital (bottom quintile). The
bottom panel shows available beds at ICU hospitals within 5 km of each non-ICU hospital. Plots on the left show
unweighted averages, and plots on the right weight each hospital-week by the number of non-ARI deaths. Any bed
availability above 20 is capped at 20. We measure capacity of beds by taking either the 2013 infrastructure data
on capacity or using hospitalizations data for 2007 and 2008 to construct an estimated capacity. Available beds
are just the difference between capacity and observed hospitalizations.
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Figure S14:
IV Estimates by Diagnosis-Level Mortality Rates
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(b) IV estimates: deaths
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(c) IV estimates: hospitalizations

Notes: The plot on the top left shows the distribution of observed mortality rates during 2007 and 2008 by
major diagnosis group. We stratify positive rates into low and high based on the admissions-weighted median.
The plot on the top right shows IV estimates on non-ARI deaths by pre-2009 diagnosis-specific mortality rates,
instrumenting (normalized) hospitalizations due to ARIs with the (normalized) measure of neighboring ARIs. The
plot on the bottom shows IV estimates on non-ARI hospitalizations by pre-2009 diagnosis-specific mortality rates,
instrumenting (normalized) hospitalizations due to ARIs with the (normalized) measure of neighboring ARIs. Each
coefficient corresponds to a separate regression. Each series corresponds to a different definition of neighboring
healthcare facilities. Regressions include hospital and week FE. Bars correspond to 90 and 95% confidence intervals,
from standard errors clustered at the hospital level.
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Figure S15:
Hospital Transformation of Small and Non-ICU Hospitals during the

Covid-19 Outbreak by Distance
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Notes: The graph on the left shows a binned scatterplot for small hospitals of the relationship between distance
to the nearest larger hospital and the share of those small hospitals that underwent a transformation during the
Covid-19 outbreak. The graph on the right shows the same for non-ICU hospitals by distance to the nearest
ICU. Each graph considers 20 bins of distance, with each marker representing the within-bin mean. Hospital
transformation refers to increases in capacity as measured by hospital beds, training of medical personnel to deal
with increased demand and larger shares of severely-ill patients, and setting up a triage system. Data on hospital
transformation were obtained from the government via a freedom of information request (October 2020).
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Figure S16:
Municipality-Level Healthcare Facilities in 2013 and 2009
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(b) Correlation between 2013 and 2009
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(c) Change in SSA units from 2009 to 2013
relative to 2009 ARI admissions
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(d) Change in SSA units from 2009 to 2013
relative to 2009 ARI deaths

Notes: These plots show municipality-level infrastructure data for the SSA system for 2013 and 2009. Healthcare
units include both hospitals and clinics. The plot on the top left shows the distribution of number of facilities in a
municipality for each year. The plot on the top right shows the correlation between the number of units each year.
The plots on the bottom correlate the municipality-level averages of the (normalized) 2009 ARI hospitalizations
and ARI deaths with the percentage change in the number of SSA units from 2009 to 2013.

S-22



Figure S17:
Hospital Beds in Measured 2013 and Estimated with 2007-2008 Data
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Notes: This plot shows the correlation between hospital beds as measured in 2013 and an estimate of beds from
the 2007-2008 hospitalizations data. We use the maximum stock of patients in a given hospital during 2007 and
2008 as a proxy for the total bed capacity of the hospital.
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